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We examine the asympto t ic  behavior  of the solutions of the heat  conduction equation in a 
p rob lem concerning initial  heating.  We focus our main  attention on the t e r m  in the expan-  
sion which de te rmines  the gradient  of the t e m p e r a t u r e  field.  

If the flow of heat  through the su r face  of a body in a d i rec t ion  f rom the outside toward the in te r io r  is 
posi t ive ,  the body begins to w a r m  up. The study of this initial heat ing is in te res t ing  f rom a theore t ica l  
point of view (it is the s imp le s t  example  of a non-es tab l i shed  p r o c e s s  in a s y s t e m  with an infinite number  
of degrees  of f reedom);  it a lso has numerous  appl icat ions.  We p resen t  h e r e  some  s imple  genera l  c o n -  
s idera t ions  in this regard ;  in addition, we p re sen t  the r e su l t s  of the calculat ion of var ious  methods for  
the initial  heating of a spher ica l  volume according  to a l inear  law.* These  resu l t s  a r e  applied to an ap-  
p rox ima te  calculat ion of a t h e r m o - c a p i l l a r y  force  acting on a smal l  he terogeneous  body placed in a liquid- 
f i l led container .  

It is a lso of in te res t  to consider  other  p rob l ems  of ma thema t i ca l  phys ics ,  which lead to non-es t ab -  
l ished p r o c e s s e s ,  in pa r t i cu la r ,  to p a r a m e t e r s  varying accord ing  to a l inear  law. 

1. For  s impl ic i ty  we cons ider  a homogeneous i so t rop ic  medium occupying a domain D, bounded by 
a c losed p i ecewise - smoo th  su r face  S. (A m a j o r  pa r t  of our d iscuss ion c a r r i e s  over  d i rec t ly  to nonhomo- 
geneous and nonisotropie  media ,  and, mathemat ica l ly ,  to a domain with an a r b i t r a r y  boundary; it a lso  
c a r r i e s  over  to a wide c lass  of parabol ic  equations and s y s t e m s  whose extent it would be of in te res t  to de-  
fine m o r e  exactly).  Let,  e, 7 ,  and ~t = 7 / c  be, r e spec t ive ly ,  the speci f ic  vo lumet r ic  heat  capaci ty,  the 
coefficient  of t he rm a l  conductivity, and the coefficient of t h e r m a l  diffusivity; a lso  let u(x, t) (x = (xi, x2, 
x3)) be the t e m p e r a t u r e  field, and let q(x, t) be the heat  flow intensi ty applied throughout the volume,  ca l -  
culated pe r  unit volume and unit t ime .  Since the heat  flow pass ing  into D through S can be in t e rp re t ed  as 
a heat  flow inse r ted  into D in the immedia te  p rox imi ty  of S, with D the rma l ly  insulated,  then, with no loss  
of genera l i ty ,  we can formula te  the ini t ial  heating p rob lem as a p rob lem concerning the solution of the 
equation 

Ou 1 
- -  -~ • --  - - -  q(x,  t) (O.(. . t< cr x E b = D  [J S) (1) 

Ot 

subject  to the boundary  condition 

and an initial condition 

Ou s = 0  (0~ t < oe) (2) 
On 

ul,=o =no (x) (x ~ b). 

*Linear ,  homogeneous,  initial  heat ing of a spher ica l  volume and of an infinite c i r cu l a r  Cylinder through 
the su r f ace  were  studied in [1, 2]. Nonlinear,  homogeneous,  initial  heat ing of a spher ica l  volume was 
studied in [3]. The following t e rmino logy  is employed for  l inear  initial  heating:  quas i - s t a t iona ry  behav-  
ior ,  r egu la r  behavior  of the second kind, l inear  r egu la r  behavior .  
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M o r e o v e r ,  the g iven funct ion q(x, t) can be a g e n e r a l i z e d  funct ion of at  m o s t  the  f i r s t  o r d e r  with suppor t  
on 5 x [0, ~] ,  i . e . ,  if  the  c o n c e r n  is with appl ied p r o b l e m s ,  then,  a long with hea t  s o u r c e s  d i s t r i bu ted  
th roughout  the  vo lume ,  we can have  s o u r c e s  c o n c e n t r a t e d  on s u r f a c e s ,  c u r v e s ,  and at individual  points  in 
D o r  on S. The  ini t ia l  funct ion u0(x) can a l so  be  a g e n e r a l i z e d  funct ion,  the  so lu t ion  being u n d e r s t o o d  in 
the  s t a n d a r d  g e n e r a l i z e d  s e n s e .  We r e m a r k ,  a l so ,  tha t  D can  have  mul t ip le  boundary  points ;  then in 
each mul t ip le  boundary  point  A is c o n s i d e r e d  only as m a n y  t imes  as  i ts  mul t ip l i c i ty  a c c o r d i n g  to the  v a r -  
ious methods  of a p p r o a c h  to A f r o m  D. 

2. The s tudy of the a s y m p t o t i c  b e h a v i o r  of the  so lu t ion  is b a s e d  on an appl ica t ion  of the G r e e n ' s  
funct ion G(x, t; ~) (x, } 6D, 0 -< t < ~) ,  which s e r v e s  as the  so lu t ion  of the  p r o b l e m  (1)-(3) when q = 5 (x 
- -~ )5 ( t ) ,  u0(x)~- 0, or ,  equivalent ly ,  w h e n q -  0,u0(x) = ( 1 / c ) 5 ( x - - ~ ) .  This  funct ion is s y m m e t r i c  (G(x, t; 
}) = G(~, t ;  x)), is cont inuous  in the  se t  of its a r g u m e n t s  outs ide  of the  se t  {x = ~, t = 0}, and has  f o r  t 
-~ co the a s y m p t o t i c  r e p r e s e n t a t i o n  

G ( x ,  t; ~) 1 ' G~(x,  t; ~) 1 . . . .  ~- -- i- 0 (exp ( - -  ~at)), (4) 
c IDt c ID I 

where  IDI = rues D, k 1 is the s m a l l e s t  pos i t ive  c h a r a c t e r i s t i c  value  of the second  boundary  value  p r o b l e m  
fo r  the Lap l ace  o p e r a t o r  in D, and the  e s t i m a t e  of the  r e m a i n d e r  t e r m  in equat ion (4), as tt is a l so  in the 
f o r m u l a s  to follow, is un i fo rm  with r e s p e c t  to x and ~. 

The so lu t ion  of the  ini t ia l  p r o b l e m  (1)-(3) can be wr i t t en  with the  aid of the G r e e n ' s  funct ion in the 
f o r m  of a sum of i n t e g r a l s  

l 

, (x, t) .... j'dz .fG (x, f - -  ~; ~) q (~, x) d~ + c SG (x, t; ~) u o (~) d~. (5) 
0 D D 

F r o m  this ,  by v i r t ue  of the  r e l a t i on  (4), we can m a k e  a s t a t emen t ,  f i r s t  of all ,  conce rn ing  the inf luence  of 
the ini t ial  funct ion u0(x) on the  a s y m p t o t i c  behav io r  of the  solut ion as t -~ ~ ;  it adds a cons tan t  t e r m  and a 
t e r m  of o r d e r  not  h i g h e r  than exp ( - -h i t ) .  T h e r e f o r e ,  in  p r o b l e m s  w h e r e  t h e s e  t e r m s  a r e  not  e s sen t i a l ,  
the ini t ia l  funct ion can be changed  a r b i t r a r i l y ,  i . e . ,  we can c o n s i d e r  the p r o b l e m  as one without an ini t ia l  
condi t ion.  

3. Put t ing  u0(x) - 0 fo r  s impl i c i ty ,  we obtain f r o m  equat ion (5), by v i r tue  of  the  r e l a t ion  (4), the  r e -  
sult  

t 

u (x, t) = "c {O] 
0 D 

t 

+ dT 61 (x, t - - 'c;  ~) q (L z) d~ = u~ (t) -i- "2 (x, t). (6) 
0 D 

When ! qdx ~ 0, the  f i r s t  t e r m  is the  p r inc ipa l  t e r m ,  but s ince  it is a funct ion of t only, i . e . ,  it d e -  
t e r m i n e s  the ini t ial  hea t ing  of the por t ion  of the m e d i u m  in the body unde r  cons ide ra t ion ,  it is  of e s sen t i a l  
i n t e r e s t  to  s tudy the  second  t e r m ,  which d e t e r m i n e s  the g rad ien t  of  the t e m p e r a t u r e  f ield.  F o r  this  we 
c a r r y  out an in t eg ra t ion  by p a r t s  with r e s p e c t  to t,  which y ie lds  

u~(x, t ) -  i'a.(x, o; ~)q(~, t )d~- . i  S2(x, t; ~)q(~, o)d~ 
D D 

t 

- dT.f t -  T) !7) 
0 D 

w h e r e  

s2 (x, t; g) = j" s l  (x, T; ~) aT = (o (exp (--  xg))). 
t 

If  q ' t (x ,  t) is inf ini tely sma l l  in c o m p a r i s o n  with q(x, t) as  t ~ ~o, then  the p r inc ipa l  t e r m  on the r igh t  
s ide  of equat ion (7) is the  f i r s t  t e r m  u2t(x, t), which has  a c o m p a r a t i v e l y  s i m p l e  s t r u c t u r e ;  as  t ~ ~ the 
o r d e r  of the  s econd  t e r m  is 0 (exp- -  )tit); to  define m o r e  exac t ly  the  o r d e r  of  the  th i rd  t e r m ,  we can c a r r y  
out a r e p e a t e d  in t eg ra t ion  by p a r t s ,  which,  inc identa l ly ,  m a k e s  it pos s ib Ie  to d e t e r m i n e  the  a s y m p t o t i c  r e -  
p resen ta t iQn of the  so lu t ion  m o r e  p r e c i s e l y .  M o r e o v e r ,  i f  q exhibi ts  a p o w e r - l a w  type  behav io r ,  we can 

then u se  the s i m p l e  f o r m u l a  exp (--X ( t - - r ) ) r P d r  ~ (1/X)t p (t ~ ~) ,  va l id  fo r  X > 0 fo r  r ea l  p of a r b i t r a r y  
I 

s ign.  
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4. It follows f rom Eq. (6) that if we replace  q(x, t) by ~(x, t), then ~l.I:'~ [q(x, t ) - -  q(x, t)ldxldt < ~ be- 
0 D 

c o m e s  ffl(t) - -  ut(t)t-y ~ c o n s t  (~ is  f o r m e d  fo r  the  s o l u t i o n  wi th  t h e  a l t e r e d  f low).  If  m a x  I~(x, t) - -  q(x, t) l 

-* 0, t h e n  m a x  tu2(x, t ) - -u2(x,  t ) l -  0. If i I~(x, t ) - -q (x ,  t)idx ~ 0, t h e n  .1 lu2(x, t ) -  u2(x, t ) l d x -  0. 
t ~  x t ~  D t ~  D t ~  

5. The Green 's  function G admits the expansion 

G (x, t; ~) - ~ ; ]  + l_~c E f J (x)f, (~)exp (-- X,t), 

i 

where the summation extends over  all posi t ive cha rac te r i s t i c  values Xj of the second boundary value prob-  
lem for the Laplace  opera tor  in D, and where fj (x) is unders tood to be a normal ized  charac te r i s t i c  function 
corresponding to Xj. F rom this we have 

1 ~k-'~ 1 
G 2 (x, t; ~) = ~ ~-.E ~ fj (x) fz (~) exp (-- ~jt), (8) 

] 

and we can the re fo re  wri te  the f i rs t  t e rm  on the right side of equation (7) in the form 

u,~(x, t)= 1 V l j__[q(~, t)[,(~)d~.f,(x). 
C ~ s 2 i 

6. We consider  the s imples t  case  of l inear  initial heating in which the flow entering the medium is 
s tat ionary,  i . e . ,  q = q(x). In this case,  f rom the relat ions (6) and (7) we obtain 

u (x, t) = -~- t + u,1 (x) + 0 (exp (-- ~.tt)), 
C 

where 

q = ~ - ( -  q(x)dx, u2~(x)= a~(x, O; ~)q(~)d~. 
I " " 1  

D D 

It is readi ly  ver i f ied  that the sum of the f i r s t  two t e r m s ,  explicitIy wri t ten out here ,  consti tutes a 
par t i cu la r  solution of Eq. (1), sat isfying the boundary condition (2); in addition, u2t(x) must  sat isfy the 
Poisson equation 

and the boundary condition (2). 

(9) 

A. = 1 q (xc ) (10) 
Y 

Since the mean value of the right s ide is equal to zero ,  the n e c e s s a r y  con- 
dition for solvabili ty is sat isfied;  m o r e o v e r ,  the solution of Eq. (10) is de termined  to within an a r b i t r a r y  
constant t e rm;  for  the given init ial  condition (3) this t e r m  can be de termined  f rom the re la t ion 

 . l(x)dx = S .0(x)dx 
D D 

We note that the des i red  solution of Eq. (10) is given by the last  express ion  in Eqs. (9), which can 
be rewr i t ten  in the form 

u~l (x) = S [-- ~'G~ (x, 0; ~)1 1__V ~ -  q (~)] d~; 
D 

the re fo re ,  the function TG2(x , 0; ~) r ep resen t s  the Green ' s  function for the Poisson equation with the 
boundary condition (2) (by the Green ' s  function we understand h e r e  the kernel  in the integral  represen ta t ion  
of the solution of the problem in t e r m s  of its nonhomogeneous t e rm) .  This enables us to form,  in a num- 
ber  of cases ,  the dominant f i rs t  t e r m  in the represen ta t ion  (7), the reby  by-pass ing construct ion of the 
Green ' s  function G(x, t; ~) for  the Eq. (1). 

It should be noted that the Green ' s  function H(x; ~) for  Poisson ' s  equation with the boundary condition 
{2) and the symmet ry  condition H(x; ~) - H(~; x) is de termined only to within the t e r m  g(x) + g(~), where g 
is an a rb i t r a r y  function. This a rb i t r a r ines s  is connected with the fact that the study is ca r r i ed  out "on 
the spec t rum of the p rob lem."  This,  in fact,  defines the basic specif ic  mathemat ica l  na ture  of the prob-  
lem. 
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If s o m e  G r e e n ' s  function H(x; ~) is known for  all  x, ~ ED, we can then put 

1 
G(x, o; ~) /4(x; U +g(x) +g(~) 

and de t e rmine  the function g f r o m  the condition of or thogonali ty to a constant  (see Eq. (8)): 

O= i '6~(x,  O; ~)d~=--1----SH(x;y ~)d~+g(x)lDj+;g(~)d~, 
D D D 

whence 

1 f H ( x ;  ~)d~. g (x) = - - g  -;- ? {DJ 
D 

Taking a v e r a g e s ,  we obtain 

and, finally, 

= - - g  --~ -~1 ~/, whence g := 1 ~,  
? 2? 

t 1 R ' I /4(x;Dd~ 
g (x) = - - ~  ~ IDt 

D 

G (x, o; ~) = - ! n (x; ~) - ! 
? ? 

D D 

7. Let  H(x; ~) be known only for  ~ES, i . e . ,  suppose  that  we know the Green ' s  function for  the second 
boundary value p rob l em  for  L a p l a c e ' s  equation, and let  the suppor t  of q(x) belong ent i re ly  to S, i . e . ,  we 
a re  talking h e r e  of initial heat ing of the domain D through its su r face .  In this case ,  just  as in the conditions 
of the las t  p a r a g r a p h  of w we can cons t ruc t  the function u21(x) d i rec t ly ,  by -pass ing  the construct ion of the 
function G2(x, 0; ~). To do this ,  it is n e c e s s a r y  to make ,  using the Eq. (10), the subst i tut ion 

' 6 ~  [xl2' (11) u~1 (x) = v (x) = - 

as a r e su l t  of which we obtain for  v in D L a p l a c e ' s  equation and the boundary condition 

Ov 1__ 1 b(x) .q_q_lxlcos(x/,'n), (12) 
On js ~' 3 ?  

where  n is the inner  no rm a l  and b(x) is the intensi ty of the heat  flow enter ing through S pe r  unit a r ea  p e r  

unit t ime;  in addition, ~ = 1/iD] t b(x)dx = (ISI/IDl)b, where  IS] is the a r e a  of the su r f ace  S. F rom Eq. 
s 

(12) we obtain, with the aid of the G r e e n ' s  function, an express ion  for  v(x); f rom it and f rom Eq. (11) we 
then find 

- -~-.I i Lb (~) 
(x) = ~ Ixl: - H (x, ~) it21 

S 
-- / - \  ] 

+ @ I~t cos (5 n) d~ + const. (13) 

If the G r e e n ' s  function for  the domain D is not known, the function v(x) can then be cons t ruc ted  num-  
er ica l ly ,  for  example ,  by solving the in tegra l  equation on S for  the densi ty of the potential  of a s imple  
l aye r .  We can a lso  make  use  of an analogous equation obtained f rom the known in tegra l  r ep resen ta t ion  
of the ha rmonic  function v(x) in t e r m s  of the values  of vl s and ~v/anl  s with the aid of an a r b i t r a r y  funda- 
menta l  solution of L a p l a c e ' s  equation. The s i tuat ion s impl i f ies  somewhat  if we choose the fundamental  
solution such that  i ts  n o r m a l  de r iva t ive  is constant  on a pa r t  of S: the in tegra l  equation need then be 
solved only on the remain ing  pa r t  of S. In this way we can e l iminate  f rom S a flat  or  spher ica l  port ion,  
if  such exis t s .  
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,a, ~:o .a, ~:o,,  ..a, [~:o,a 

t6,e . I / /  / N  s,e 
t~2 7,S ~Z 

~.o 1,4 
�9 ,',.q 3,3 t,t" 
0,7 2 , 8  . ,,o . O, eo $,5 e] 

~,7t-'--,. V t, e7 

Fig. 1. Homogeneous influx of heat over the surface  and a heat 
source  at the point A t . 

8. As one of the few cases  in which the function H(x, ~) can be constructed in closed form, we cite 
the pract ica l ly  important  case in which the domain D is a ball (see, for example, [4], p. 391). For  ~ ES 
this function is given by 

I ( 2 ~_ l_ln 2R ) ~- const (14) 
H(x; ~ ) =  4~ Ix--~l  R / \  , ' 

R + Ix - -  ~l--ix! cos (x, ~) 

By vir tue of Eq. (13) we obtain 

f[ u21(x)= ~ ~_L 1 2 
6v !xj , --~---~, Ix :~!  

S 

+ w i n  / \  
R + Ix - -  ~-I'- Ixl cos (x, ~) -' 

(henceforth we give the function u21 (x)to within an a rb i t r a ry  constant). This resul t  can be simplified s ome-  
what if we take into account the fact that the function (14) is harmonic  in D with respec t  to x; the re fore  the 
function 

2 1 2R ] ( _ L R l d ~  
~ [ ~  + "-R ln R + lx-- ~,--,x[ (xf l)  J \  o / 
S COS 

is also harmonic  in D. But since it depends onIy on Ixl, it is then equal to a constant.  (We can ascer ta in  
its value. For  this we need to put x = 0, whence we find that the integral  is equal to (8/3)~R2"~.) Thus 

u.~(x) == IxJ~ + 4 - ~ v .  Ix - -  gl 
S 

---- In b (~) d~. (15) 
R / \  " 

R + Ix-- ~ l - -  Ix! cos (x, ~) 

9. For certain special  c lasses  of flows b(x) the expression (15) simplifies.  This is the case,  f i rs t  
of all, if the flow is concentrated at individual points. The integral  (15) is then replaced by a sum. Another 
s imple case is that of a homogeneous flow (b(x) =- const), as indicated at the end of w the integral  in Eq. 
(15) then does not depend on x, i . e . ,  

- - ~  o (x) = ~ q  Ix? = ~ - ~ - I x ? .  (16) 

Of special  interest  a re  axially symmet r i c  flows for  which, in the spherical  coordinates ~o and $, the 
intensity depends only on the latitude ~, b = b(~). Let us assume,  at f i rst ,  that the flow Q is uniformly 
distributed along the paral lel  ~ = ~0- Then, by vir tue of the relat ion (15), 
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,l,.z~__~ # :o A. 0 : o,o . , ,  ~ :o,a 

' ~"r z .oe  

Fig.  2. H o m o g e n e o u s  inf lux of hea t  o v e r  the  s u r f a c e  and hea t  
s o u r c e s  at  the  po l e s  A i and A2. 

Q S[ 
r 4~7 

0 

u2, (x) = u .  (N, o) - O lxl ~ 
8~7R 3 

2 

Ixj" + R ~ -  2 ]xlR (sin ~sin ~0cos (p -k cos ~ cos Co) 

l ~ - l n { 2 R ( R - ! - ~  ]xr_R"--21xlR(s inOsin~ocos~p+cos~cos~,  o) 

--Ix](sin ~sin Oo cos,r +cos ~ cos ~30))-' } ]dcp. 

The  i n t e g r a l  of  the  f i r s t  t e r m  in the  s q u a r e  b r a c k e t s  i s  a c o m p l e t e  e l l ip t ic  i n t e g r a l ;  
ven ienee ,  h o w e v e r ,  s i n c e  the  i n t eg ra l  of the  second  t e r m  m u s t  be  eva lua t ed  n u m e r i c a l l y ;  
t ion of the  f i r s t  t e r m  as  an e l l ip t i c  i n t e g r a I  is  an u n w a r r a n t e d  p r o c e d u r e .  

We no te  a p a r t i c u l a r  c a s e :  fo r  ~0 = 0 

q Ixi~+ q t 2 
u21 (txt, 9 ) =  8r~yR~ 4.~~7 V ix[ ~ + R" - -  2[xlR cos 

1 In 2R ] .  
R R +  1/Ix?+ R ~ --2[xl RcosO - - Ix  t cosO ' 

a e o r r e s p o n d i n g  e x p r e s s i o n  is  ob ta ined  f o r  ~0 = ~ if the  s ign  in f ron t  of the  t e r m s  conta in ing  eos  ~ is  r e -  
v e r s e d .  A s e c o n d  i m p o r t a n t  p a r t i c u l a r  e a s e  is  ob ta ined  f o r  a r b i t r a r y  80 and 8 = 0 and ~, i . e . ,  when the  
t e m p e r a t u r e  is  c o n s i d e r e d  on the  ax i s  of s y m m e t r y -  

(17) 

th is  i s  of  l i t t l e  c o n -  
thus the  e v a l u a -  

(18) 

8.~7R" 4-~7 LV ~ ' " " x5 T R- - -  2x3R cos eo 
§ 1 I n  2__RR ol.j (19), 

R R + ~ x~ + R ~ ---ffx~Rcos % --x3cose 

Rely ing  on the  e x p r e s s i o n s  (17) o r  (19), we can  e a s i l y  w r i t e  down, in the  f o r m  of a r e p e a t e d  i n t e g r a l ,  
the s t a t i o n a r y  t e r m  in the  t e m p e r a t u r e  f o r  an a r b i t r a r y  ax ia l ly  s y m m e t r i c  h e a t  f low. 

10. F i g u r e  1 p r e s e n t s  the  i s o t h e r m s  f o r  a hea t  inf lux of to ta l  p o w e r  Q0 when the  f low flQ0 (~ i s  a 
p a r a m e t e r )  is u n i f o r m l y  (homogeneous ly )  d i s t r i b u t e d  o v e r  the  s u r f a c e  whi le  the  f low ( 1 -  fl)Q0 e n t e r s  
t h rough  the  no r th  po le  A 1. In th is  c a s e ,  by v i r t u e  of  the  r e l a t i o n s  (16) and (18), we h a v e  

u2x(lx], ~ ) -  Qo [x[~ § ( I - - ~ ) Q o  [ 2 
8~7R s 4~7 ]/z] x] ~ @ Re _ 2 Ix t RCQS 

+ ! In 2R l 
R R + V  fxl ~ + R ~ - -  21x[ Rcos ~ --Ncos eJ " 

To c o n s t r u c t  the  i s o t h e r m s  we e x p r e s s e d  th is  funct ion in the  c o o r d i n a t e s  p = ,/-xx 2 + x 2, z = x 3 and then  
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Fig. 3. Homogeneous influx of heat over  the surface  and heat 

sources  at three  points situated on a mer id ian .  

numer ica l ly  integrated the sys tem of equations 

dp 1 Ouel dz _ 1 Ouel 

ds 1grad u~ll Oz ds [grad u21[ 0p 

It is seen that a minimum point for  the t empera tu re  occurs  on the axis of symmet ry ,  which depends 
on /3; this point can be found f rom the condition u21 = 0. An easy calculation shows that the corresponding 
value of z is the only real  root  of the equation 

z ( R  - -  z) 2 -k  (1 - -  [~) R e (3R - -  z) = 0, 

moreover ,  z[/~ =0 = --R,  z[~ =t  = 0, and z increases  with /3 for 0 -<-/3 <- 1. When/3 < 0, the minimum of 
the t empera tu re  is reached at the point z = --R.  

Figure 2 shows the i so therms  for the case  in which the flow/3Q 0 is supplied uniformly through the 
sur face  while equal flows 1/2(1-/3)Q0 enter  through the north and south poles.  Here 

uoi(,o, z) -- Qo 
. . 8~7R ~ (P~ z~)~ 

, (l--~)qo [ 2 . 2 

8 ~  L, ,o~=(R--z) 2 ' ~ p ~ + ( R = z )  ~- 

i 4R 2 ] 
+ ~ In JR--  z ' 1 . ~ : ( e - -  zF] [R-:-z-i- ~ P~+(e+z) ~] , " (20) 

For  sma l l  /3 a c i r c l e  of m i n i m u m  tempera tu re  occurs in  the equator ia l  plane; the radius of th is  c i r c l e  
sat isf ies the equation 

( I - -~ )  (p~ _R~)3./~ R I p'+R"iR " t P~'~cR ~) - -  R ~ ' 

f rom which we deduce that as fl is var ied  f rom Oto 0.6 the value of p dec reases  f rom R to 0. When 0.6 
~ -< 1, the minimum tempera tu re  is attained at the center  of the ball (for 0 -< fl < 0.6 the t empera tu re  is 

a maximum there) .  When ~ < 0, the minimum tempera tu re  is attained at the equator.  

Figure 3 depicts the case  in which the flow ~Q0 is supplied uniformly through the sur face  while flows 
1 /3(1- f l )Q0 enter through the points A 1, A 2, and A~ (A~ and A 2 a re  positioned symmet r i ca l ly  with respec t  to 
the ver t ical  axis). The t empera tu re  field here  is not axially symmet r i c .  The picture of the i so therms  is 
shown only in the plane passing through the points A~, A2, and A 3. 

In Fig. 4 we show the case in which the flow ~Q0 is supplied uniformly through the surface  while the 
res t  of the flow (1--~)Q0 enters uniformly through the equator.  Here on the axis of s y m m e t r y  we have 

uz, (z)=.  Qo z 2 , (1- -~)Q0["  _2 + l__ln 2R ] 
8~7R a ~ 4n7 L~/z~ R R-?~ z 2 -k R ~" " 

Exactly the same dependence is obtained as in the dependence of u21 on p for z = 0 in Eq. (20). Therefore, 
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Fig. 4. Influx of heat,  uniform over the sur face  and concentrated 
uniformly along the equator.  

when 0 - / 3  < 0.6, the minimum tempera tu re  is attained at two symmet r i ca l ly -p l aced  points on the axis of 
s y m m e t r y  whereas ,  when 0.6 s fi _ 1, the t empera tu re  is a minimum at the center  of the ball (when ~ < 0, 
it is a minimum at the poles).  The case fl < 0 corresponds  to cooling through the sur face  and, owing to 
the nature  of the boundary condition, the actual value is sma l l e r .  

In the Figs.  1-4 the values shown are  those of the dimensionless  quantity u'2t = 87ryR3u21/Q0- 

11. We employ the resul ts  obtained above for calculating approximately the the rmo-cap i l l a ry  force  
acting on a smal l  heterogeneous inclusion (for example, a smal l  bubble) W, placed in a liquid filling a con- 
ta iner  D, under conditions of weight lessness ,  and initially heated by a constant influx of heat, q(x). We 
assume that on the boundary r of the body W the coefficient of sur face  tension u depends l inearly on the 
tempera ture ,  u = cr 0 -  ulu, and we assume also that the body W introduces no essential  per turbat ions in 
the t empera tu re  field in its vicinity; this la t ter  assumption is cer ta inly  sat isf ied with sufficient approxi-  
mation.  Then the energy of the surface  tension associa ted with r is equal to 

n = f [ S -  ~lu ix,  t)t dx  : =  ( S - -  ~ r ) I r t .  
r 

Therefore ,  as the t he rmo-cap i l l a ry  force  we can take 

F = - -  grad H ~ ~i grad u r [Pl --~ al IF[ grad u21 (x) 

(on account of the smal l  s ize  of the body W we omit the averaging sign). Thus, the t h e r m o - c a p i l l a r y  force  
is d i rected towards the side of the zone of the advancing initial heating. 

Suppose that the inclusion W has the shape of a smal l  ball of radius r 0. Then as this smal l  ball 
moves with the veloci ty v, it is acted on by a viscous force  equal, in accord  with Stokes' Law, to --67ror0v, 
where ~ = ~ (u) is the tempera ture-dependent  v iscos i ty  coefficient.  Assuming the motion to be quas i -s ta t ic ,  
we obtain the relat ion 

2 2~15 grad a, 1 (x). 6a~r0v = ei4~r0 grad u~j_ (x), i.e. v = 3~ " 

The motion takes place along curves  orthogonal to the family of i so the rms .  

We consider ,  in par t icu lar ,  the motion of the smal l  ball along the axis of s y m m e t r y  in the case  of 
axially symmet r i c  initial heating of the ball through its surface .  Let the flow entering along S be d is t r ib -  
uted with the density b = b(~). Then, by vir tue of the relat ion (19), on the axis of s y m m e t r y  we shall have 

u.,~ (z) = - - - -  z'- + 
- 2 7 R  4 n ?  V z 2 H - R ' ~ - 2 z R c o s ~  

0 

2R ] sin ~b (~) d~; 
_~ l l__R In R @ I z "~ -;: R 2 ~ 2 z R c o s  ~ - -  z cos~ 

whence we find the equation of motion of the smal l  balI to be 
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,z 2 lro!  2,z-Rcoso, 
dt - - "  37q - - ~  z - -  4~ . z ~ _~. R2__2zRcos ~)s,,'2 + 

0 

: -  z - -  Rc~ ~ - -  c~ ~ V z2 § R2 - -  2zR  c~ ~ ] gn~b(#)de}. 
R [R - -  zcos ~ + V z  2 + R "~ - -  2zR  cos ~) 7/z 2 `  R z -  2zRcos 

Thus,  for  the f i r s t  example  of w we obtain the equation 

d z ,  = 6aroQ o [z (R - -  z) z + (1 - -  [g) R 2 (3R - -  z)], 
dt 6~'qTR 3 (R ~ z) ~ 

f rom which we can obtain the function z(t), subject  to the given initial  condition, by numer i ca l  integrat ion.  
In pa r t i cu la r ,  when ~ = 1, i . e . ,  when the heat  flow enters  uni formly  through the su r face ,  we obtain, a s -  
suming,  for  s impl ic i ty ,  that  all  the p a r a m e t e r s  a r e  t empera tu re - independen t ,  

(hr~176 t. 
d z _ 61roQo z, whence z = z  oexp 6~rlTR 3 
dt 6~lqTR ~ . 

The t ime  of exit at the su r face  S of the ball  is given by 

T 6zrlTRn In 
o'lroQo IXol 

1. 
2. 
3. 
4. 
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